Research Group of Prof. Dr. D. Peterseim
Institute for Numerical Simulation
maximize

Dr. Mira Schedensack

Address: Institut für Numerische Simulation
Wegelerstr. 6
53115 Augsburg
Germany
Office: We4 0.023
Phone: +49 228 73-2721
Fax: +49 228 73-3979
E-Mail: schedensack.ins.uni-bonn.de
See also: https://www.math.uni-augsburg.de/prof/lam/Mitarbeiter/mira_schedensack/
URL: http://peterseim.ins.uni-bonn.de/people/schedensack.html

Former member of the institute

In the winter term 2016/2017 I'm guest lecturer at Humboldt-Universität zu Berlin.

See also my webpage at the HU.

Awards

Teaching

Publications

Submitted Articles:

[1] G. Li, D. Peterseim, and M. Schedensack. Error analysis of a variational multiscale stabilization for convection-dominated diffusion equations in 2d. ArXiv e-prints, 2016. Also available as INS Preprint No. 1612.
bib | arXiv | .pdf 1 ]

Journal Papers:

[1] D. Peterseim and M. Schedensack. Relaxing the CFL condition for the wave equation on adaptive meshes. J. Sci. Comput., 2017. Online First.
bib | DOI | arXiv | .pdf 1 ]
[2] M. Schedensack. Mixed finite element methods for linear elasticity and the Stokes equations based on the Helmholtz decomposition. ESAIM Math. Model. Numer. Anal., 51(2):399-425, 2017.
bib | DOI ]
[3] M. Schedensack. A new generalization of the P1 non-conforming FEM to higher polynomial degrees. Comput. Methods Appl. Math., 17(1):161-185, 2017. also available as INS Preprint No. 1507 and arXiv e-print 1505.02044.
bib | arXiv | .pdf 1 ]
[4] M. Schedensack. A new discretization for mth-Laplace equations with arbitrary polynomial degrees. SIAM J. Numer. Anal., 54(4):2138-2162, 2016. Also available as INS Preprint No. 1528 and arXiv e-print 1512.06513.
bib | DOI | arXiv | .pdf 1 ]
[5] C. Carstensen, D. Gallistl, and M. Schedensack. L2 best-approximation of the elastic stress in the Arnold-Winther FEM. IMA J. Numer. Anal., 36(3):1096-1119, 2016.
bib | DOI | http ]
[6] C. Carstensen, B. Reddy, and M. Schedensack. A natural nonconforming FEM for the Bingham flow problem is quasi-optimal. Numer. Math., 133(1):37-66, 2016.
bib | DOI | http | .pdf 1 ]
[7] C. Kreuzer and M. Schedensack. Instance optimal Crouzeix-Raviart adaptive finite element methods for the Poisson and Stokes problems. IMA J. Numer. Anal., 36(2):593-617, 2016.
bib | DOI | arXiv | http ]
[8] C. Carstensen, D. Gallistl, and M. Schedensack. Adaptive nonconforming Crouzeix-Raviart FEM for eigenvalue problems. Math. Comp., 84(293):1061-1087, 2015.
bib | DOI ]
[9] C. Carstensen, K. Köhler, D. Peterseim, and M. Schedensack. Comparison results for the Stokes equations. Appl. Numer. Math., 95:118-129, 2015.
bib | DOI | arXiv | http ]
[10] C. Carstensen and M. Schedensack. Medius analysis and comparison results for first-order finite element methods in linear elasticity. IMA J. Numer. Anal., 35(4):1591-1621, 2015.
bib | DOI ]
[11] D. Gallistl, M. Schedensack, and R. P. Stevenson. A remark on newest vertex bisection in any space dimension. Comput. Methods Appl. Math., 14(3):317-320, 2014.
bib | DOI ]
[12] C. Carstensen, D. Gallistl, and M. Schedensack. Discrete reliability for Crouzeix-Raviart FEMs. SIAM J. Numer. Anal., 51(5):2935-2955, 2013.
bib | DOI | .pdf 1 ]
[13] C. Carstensen, D. Gallistl, and M. Schedensack. Quasi-optimal adaptive pseudostress approximation of the Stokes equations. SIAM J. Numer. Anal., 51(3):1715-1734, 2013.
bib | DOI ]
[14] C. Carstensen, D. Peterseim, and M. Schedensack. Comparison results of finite element methods for the Poisson model problem. SIAM J. Numer. Anal., 50(6):2803-2823, 2012.
bib | DOI | http | .pdf 1 ]

Refereed Articles in Collections:

[1] S. Brenner, M. Oh, S. Pollock, K. Porwal, M. Schedensack, and N. Sharma. A C0 interior penalty method for elliptic optimal control problems with pointwise state constraints in three dimensions. In S. Brenner, editor, Topics in Numerical Partial Differential Equations and Scientific Computing, volume 160 of The IMA Volumes in Mathematics and its Applications. Springer, 2016. To appear.
bib ]

Proceeding Papers:

[1] D. Peterseim and M. Schedensack. Relaxing the CFL condition for the wave equation on adaptive meshes. PAMM, 16(1):765-766, 2016.
bib | DOI | http ]
[2] M. Schedensack. A class of mixed finite element methods based on the helmholtz decomposition. Oberwolfach Rep., 12(3):2555-2556, 2015.
bib | DOI ]
[3] M. Schedensack, C. Carstensen, and D. Gallistl. Adaptive nonconforming Crouzeix-Raviart FEM for eigenvalue problems. Oberwolfach Rep., 10(4):3270-3272, 2013.
bib | DOI ]
[4] D. Gallistl, C. Carstensen, and M. Schedensack. Quasi optimal adaptive pseudostress approximation of the Stokes equations. Oberwolfach Reports, 9(1):497-499, 2012.
bib | DOI ]
[5] D. Peterseim, C. Carstensen, and M. Schedensack. Comparison of finite element methods for the Poisson model problem. Oberwolfach Rep., 9(1):584-587, 2012.
bib | DOI ]
[6] M. Schedensack, C. Carstensen, and D. Peterseim. Comparison results for first-order FEMs. Oberwolfach Rep., 9(1):495-497, 2012.
bib | DOI ]

Theses:

[1] M. Schedensack. A class of mixed finite element methods based on the Helmholtz decomposition in computational mechanics. Doctoral dissertation, Humboldt-Universität zu Berlin, Mathematisch-Naturwissenschaftliche Fakultät, 2015.
bib | http | .pdf 1 ]