Research Group of Prof. Dr. D. Peterseim
Institute for Numerical Simulation
maximize

Prof. Dr. Daniel Peterseim

Address: Institut für Numerische Simulation
Wegelerstr. 6
53115 Bonn
Germany
Office: We6 6.002
Phone: +49 228 73-2058
Fax: +49 228 73-3979
E-Mail: peterseim.ins.uni-bonn.de
URL: http://peterseim.ins.uni-bonn.de/people/peterseim/

Secretary

Name Email Phone Room
Oberheim, Anabela oberheim.ins.uni-bonn.de +49 228 735928 We6 6.004

Publications

Submitted Articles:

[1] D. Gallistl and D. Peterseim. Numerical stochastic homogenization by quasi-local effective diffusion tensors. 2017. INS Preprint No. 1701.
bib | .pdf 1 ]
[2] R. Kornhuber, D. Peterseim, and H. Yserentant. An analysis of a class of variational multiscale methods based on subspace decomposition. November 2016. Submitted for publication.
bib ]
[3] D. Gallistl and D. Peterseim. Computation of local and quasi-local effective diffusion tensors in elliptic homogenization. 2016. INS Preprint No. 1619.
bib | arXiv | .pdf 1 ]
[4] P. Henning and D. Peterseim. Crank-Nicolson Galerkin approximations to nonlinear Schrödinger equations with disorder potentials. 2016. INS Preprint No. 1621.
bib | .pdf 1 ]
[5] G. Li, D. Peterseim, and M. Schedensack. Error analysis of a variational multiscale stabilization for convection-dominated diffusion equations in 2d. ArXiv e-prints, 2016. Also available as INS Preprint No. 1612.
bib | arXiv | .pdf 1 ]
[6] D. Gallistl, P. Huber, and D. Peterseim. On the stability of the Rayleigh-Ritz method for eigenvalues. 2015. INS Preprint No. 1527.
bib | .pdf 1 ]

Journal Papers:

[1] D. Peterseim and M. Schedensack. Relaxing the CFL condition for the wave equation on adaptive meshes. J. Sci. Comput., 2017. Accepted for publication. Also available as INS Preprint No. 1602.
bib | arXiv | .pdf 1 ]
[2] D. Brown and D. Peterseim. A multiscale method for porous microstructures. SIAM MMS, 2016. Accepted for publication. Also available as INS Preprint No. 1410.
bib | arXiv | .pdf 1 ]
[3] A. Buffa, C. Giannelli, P. Morgenstern, and D. Peterseim. Complexity of hierarchical refinement for a class of admissible mesh configurations. Computer Aided Geometric Design, 2016. Also available as INS Preprint No. 1519.
bib | DOI | http | .pdf 1 ]
[4] P. Hennig, M. Kästner, P. Morgenstern, and D. Peterseim. Adaptive Mesh Refinement Strategies in Isogeometric Analysis - A Computational Comparison. Comp. Meth. Appl. Mech. Eng., 2016. Also Available as INS Preprint No. 1611.
bib | DOI | arXiv | http | .pdf 1 ]
[5] A. Målqvist and D. Peterseim. Generalized finite element methods for quadratic eigenvalue problems. ESAIM Math. Model. Numer. Anal., 2016. Also available as INS Preprint No. 1522.
bib | DOI | arXiv | .pdf 1 ]
[6] D. Peterseim. Eliminating the pollution effect in Helmholtz problems by local subscale correction. Math. Comp., 2016. Also available as INS Preprint No. 1411.
bib | DOI | arXiv | .pdf 1 ]
[7] D. Peterseim and R. Scheichl. Robust numerical upscaling of elliptic multiscale problems at high contrast. Computational Methods in Applied Mathematics, 2016. Also available as INS Preprint No. 1603.
bib | DOI | arXiv | .pdf 1 ]
[8] D. Gallistl and D. Peterseim. Stable multiscale Petrov-Galerkin finite element method for high frequency acoustic scattering. Comp. Meth. Appl. Mech. Eng., 295:1-17, 2015. Also available as INS Preprint No. 1504.
bib | DOI | arXiv | .pdf 1 ]
[9] C. Carstensen, K. Köhler, D. Peterseim, and M. Schedensack. Comparison results for the Stokes equations. Appl. Numer. Math., 95:118-129, 2015.
bib | DOI | arXiv | http ]
[10] C. Carstensen, D. Peterseim, and A. Schröder. The norm of a discretized gradient in H(div)* for a posteriori finite element error analysis. Numer. Math., 132(3):519-539, 2015.
bib | DOI | http ]
[11] M. Eigel and D. Peterseim. Simulation of composite materials by a network fem with error control. Computational Methods in Applied Mathematics (online), 15(1):21-37, 2015.
bib | DOI | http ]
[12] P. Morgenstern and D. Peterseim. Analysis-suitable adaptive T-mesh refinement with linear complexity. Computer Aided Geometric Design, 34:50-66, 2015. Also available as INS Preprint No. 1409.
bib | DOI | http | .pdf 1 ]
[13] P. Henning, A. Målqvist, and D. Peterseim. A localized orthogonal decomposition method for semi-linear elliptic problems. ESAIM: Math. Model. Numer. Anal., 48(05):1331-1349, 2014.
bib | DOI | http ]
[14] P. Henning, A. Målqvist, and D. Peterseim. Two-level discretization techniques for ground state computations of bose-einstein condensates. SIAM J. Numer. Anal., 52(4):1525-1550, 2014.
bib | DOI | http | .pdf 1 ]
[15] A. Målqvist and D. Peterseim. Computation of eigenvalues by numerical upscaling. Numer. Math., 130(2):337-361, 2014.
bib | DOI | arXiv | http ]
[16] A. Målqvist and D. Peterseim. Localization of elliptic multiscale problems. Math. Comp., 83(290):2583-2603, 2014.
bib | DOI | http ]
[17] D. Peterseim. Composite finite elements for elliptic interface problems. Math. Comp., 83(290):2657-2674, 2014.
bib | DOI | http ]
[18] C. Carstensen, D. Peterseim, and H. Rabus. Optimal adaptive nonconforming FEM for the Stokes problem. Numer. Math., 123(2):291-308, 2013.
bib | DOI | http ]
[19] D. Elfverson, E. H. Georgoulis, A. Målqvist, and D. Peterseim. Convergence of a discontinuous galerkin multiscale method. SIAM J. Numer. Anal., 51(6):3351-3372, 2013.
bib | DOI | http | .pdf 1 ]
[20] P. Henning and D. Peterseim. Oversampling for the multiscale finite element method. Multiscale Model. Simul., 11(4):1149-1175, 2013.
bib | DOI | http | .pdf 1 ]
[21] D. Peterseim and C. Carstensen. Finite element network approximation of conductivity in particle composites. Numer. Math., 124(1):73-97, 2013.
bib | DOI | http ]
[22] C. Carstensen, D. Peterseim, and M. Schedensack. Comparison results of finite element methods for the Poisson model problem. SIAM J. Numer. Anal., 50(6):2803-2823, 2012.
bib | DOI | http | .pdf 1 ]
[23] D. Peterseim. Robustness of Finite Element Simulations in Densely Packed Random Particle Composites. Netw. Heterog. Media, 7(1), 2012.
bib | DOI | .pdf 1 ]
[24] D. Peterseim and S. Sauter. Finite Elements for Elliptic Problems with Highly Varying, Nonperiodic Diffusion Matrix. Multiscale Model. Simul., 10(3):665-695, 2012.
bib | DOI | http | .pdf 1 ]
[25] L. Banjai and D. Peterseim. Parallel multistep methods for linear evolution problems. IMA J. Numer. Anal., 32(3):1217-1240, 2011.
bib | DOI | .pdf 1 ]
[26] D. Peterseim and S. A. Sauter. Finite element methods for the Stokes problem on complicated domains. Comp. Meth. Appl. Mech. Eng., 200(33-36):2611-2623, 2011.
bib | DOI | http ]
[27] D. Peterseim and S. A. Sauter. The composite mini element - coarse mesh computation of Stokes flows on complicated domains. SIAM J. Numer. Anal., 46(6):3181-3206, 2008.
bib | DOI | http ]

Refereed Articles in Collections:

[1] D. Peterseim. Variational multiscale stabilization and the exponential decay of fine-scale correctors. In G. R. Barrenechea, F. Brezzi, A. Cangiani, and E. H. Georgoulis, editors, Building Bridges: Connections and Challenges in Modern Approaches to Numerical Partial Differential Equations, volume 114 of Lecture Notes in Computational Science and Engineering. Springer, May 2016. Also available as INS Preprint No. 1509.
bib | arXiv | .pdf 1 ]
[2] D. Brown, D. Gallistl, and D. Peterseim. Multiscale Petrov-Galerkin method for high-frequency heterogeneous Helmholtz equations. In M. Griebel and M. A. Schweitzer, editors, Meshfree Methods for Partial Differential Equations VII, Lecture Notes in Computational Science and Engineering. 2016. Accepted for publication. Also available as INS Preprint No. 1526.
bib | arXiv | .pdf 1 ]
[3] P. Henning, P. Morgenstern, and D. Peterseim. Multiscale partition of unity. In M. Griebel and M. A. Schweitzer, editors, Meshfree Methods for Partial Differential Equations VII, volume 100 of Lecture Notes in Computational Science and Engineering, pages 185-204. Springer International Publishing, 2015. Also available as INS Preprint No. 1315.
bib | DOI | http | .pdf 1 ]

Edited Proceedings:

[1] C. Carstensen, B. Engquist, and D. Peterseim. Computational Multiscale Methods. 2015.
bib | DOI | .pdf 1 ]

Articles in Proceedings:

[1] P. Bringmann, C. Carstensen, D. Gallistl, F. Hellwig, D. Peterseim, S. Puttkammer, H. Rabus, and J. Storn. Towards adaptive discontinuous petrov-galerkin methods. PAMM, 16(1):741-742, 2016.
bib | DOI | http ]
[2] D. Gallistl, D. Peterseim, and C. Carstensen. Multiscale petrov-galerkin fem for acoustic scattering. PAMM, 16(1):745-746, 2016.
bib | DOI | http ]
[3] D. Peterseim and M. Schedensack. Relaxing the CFL condition for the wave equation on adaptive meshes. PAMM, 16(1):765-766, 2016.
bib | DOI | http ]
[4] D. Gallistl and D. Peterseim. Multiscale Petrov-Galerkin finite element method for high frequency acoustic scattering. Oberwolfach Reports, 12(3):2580-2581, 2015.
bib ]
[5] P. Henning, A. Målqvist, and D. Peterseim. Two-level discretization for the Gross-Pitaevskii eigenvalue problem with a rough potential. to appear in Oberwolfach Rep., 2014.
bib | DOI ]
[6] A. Målqvist and D. Peterseim. Multiscale techniques for solving quadratic eigenvalue problems. to appear in Oberwolfach Rep., 2014.
bib | DOI ]
[7] A. Målqvist and D. Peterseim. Numerical upscaling of eigenvalue problems. Oberwolfach Rep., 10(1):402-405, 2013.
bib | DOI ]
[8] D. Peterseim and A. Målqvist. Spectrum-preserving two-scale decompositions with applications to numerical homogenization and eigensolvers. Oberwolfach Rep., 10(1):850-853, 2013.
bib | DOI ]
[9] A. Målqvist and D. Peterseim. Finite element discretization of multiscale elliptic problems. Oberwolfach Rep., 9(1):516-519, 2012.
bib | DOI ]
[10] D. Peterseim, C. Carstensen, and M. Schedensack. Comparison of finite element methods for the Poisson model problem. Oberwolfach Rep., 9(1):584-587, 2012.
bib | DOI ]
[11] M. Schedensack, C. Carstensen, and D. Peterseim. Comparison results for first-order FEMs. Oberwolfach Rep., 9(1):495-497, 2012.
bib | DOI ]
[12] D. Peterseim. Triangulating a system of disks. Proc. 26th European Workshop on Computational Geometry (EWCG), pages 241-244, 2010.
bib | http ]
[13] D. Peterseim. Composite finite elements for elliptic interface problems. PAMM, 10(1):661-664, 2010.
bib | DOI | http ]
[14] D. Peterseim. Finite element analysis of particle-reinforced composites. Oberwolfach Rep., 6(2):1597-1665, 2009.
bib | DOI | http ]
[15] D. Peterseim and S. A. Sauter. Recent advances in composite finite elements. Oberwolfach Rep., 5(2):1233-1293, 2008.
bib | DOI | http ]
[16] D. Peterseim and S. A. Sauter. The composite mini element: a new mixed FEM for the Stokes equations on complicated domains. PAMM, 7(1):2020101-2020102, 2007.
bib | http ]

Theses:

[1] D. Peterseim. Computational Multiscale Methods for Partial Differential Equations. Habilitation thesis, Humboldt-Universität zu Berlin, 2016.
bib | .pdf 1 ]
[2] D. Peterseim. The Composite Mini Element: A mixed FEM for the Stokes equations on complicated domains. PhD thesis, Universität Zürich, 2007.
bib | .pdf 1 ]
[3] D. Peterseim. Numerische Analyse parameterabhängiger periodischer Orbits nichtlinearer dynamischer Systeme mittels Mehrzielmethode und effizienter Fortsetzungstechniken. Master's thesis, IfMath, TU Ilmenau, 2004.
bib ]

Other Reports:

[1] C. Engwer, P. Henning, A. Målqvist, and D. Peterseim. Efficient implementation of the Localized Orthogonal Decomposition method. ArXiv e-prints, Feb. 2016.
bib | arXiv ]
[2] D. Peterseim. Generalized delaunay partitions and composite material modeling. Matheon Preprint, 690, 2010.
bib | http | .pdf 1 ]